Building AI-Powered Chatbots with Supabase and Vercel AI SDK: A Complete Guide
Building AI-Powered Chatbots with Supabase and Vercel AI SDK: A Complete Guide
In 2025, AI chatbots aren't just novelties—they're essential tools for customer engagement, support automation, and personalized experiences. Imagine a chatbot that not only answers queries in real-time but pulls from your knowledge base with pinpoint accuracy, authenticates users seamlessly, and scales effortlessly on the edge. At Elysiate, we've built dozens of these for clients in web, mobile, and AI spaces, and the combination of Supabase (for robust backend services) and Vercel AI SDK (for frictionless AI orchestration) has become our go-to stack.
This guide is your blueprint to building a production-ready AI chatbot. We'll cover everything from setup to deployment, including Retrieval-Augmented Generation (RAG) for grounded responses, user authentication, and optimizations that keep latency under 2 seconds. By the end, you'll have a deployable Next.js app that rivals enterprise solutions. Whether you're a solo developer or leading a team, this tutorial draws from real-world implementations to ensure your chatbot wins user trust—and maybe even an award for innovation.
Why Supabase + Vercel AI SDK?
Before diving in, let's justify the stack:
- Supabase: Open-source Firebase alternative with PostgreSQL at its core. It handles auth (JWTs, social logins), real-time DB, storage, and crucially, vector extensions via pgvector for RAG. No vendor lock-in, and it integrates natively with Next.js.
- Vercel AI SDK: Abstracts away the complexity of AI providers (OpenAI, Groq, Anthropic) with hooks for streaming, tool calling, and error recovery. Built for Next.js, it supports edge runtime for global low-latency.
- Synergy: Supabase manages data and sessions; Vercel AI handles the LLM magic. Deploy everything on Vercel for zero-config edge functions.
| Feature | Supabase | Vercel AI SDK | Combined Benefit | 
|---|---|---|---|
| Auth & DB | Built-in Row Level Security, JWT | N/A | Secure, real-time user contexts | 
| AI Integration | pgvector for embeddings | Streaming UI hooks | RAG-powered, responsive chats | 
| Deployment | Self-host or Vercel | Edge-optimized | Global scale, <100ms cold starts | 
| Cost | Free tier generous | Provider-agnostic | Predictable, starts at $0 | 
Compared to alternatives like Pinecone + LangChain, this stack is simpler, cheaper, and faster to prototype—ideal for MVPs that evolve into production.
Prerequisites
To follow along, you'll need:
- Node.js 18+ and npm/yarn/pnpm.
- Accounts: Supabase (free), Vercel (free), OpenAI or Groq API key (for LLM).
- Basic knowledge of Next.js, TypeScript, and SQL.
- Git repo (we'll use your Elysiate project as base, but start fresh for clarity).
Clone a starter Next.js app:
npx create-next-app@latest ai-chatbot --typescript --tailwind --eslint --app --src-dir --import-alias "@/*"
cd ai-chatbot
Install dependencies:
npm install @supabase/supabase-js @supabase/auth-helpers-nextjs @vercel/ai openai @types/node
npm install -D @types/react @types/react-dom
Set up .env.local:
NEXT_PUBLIC_SUPABASE_URL=your_supabase_url
NEXT_PUBLIC_SUPABASE_ANON_KEY=your_anon_key
OPENAI_API_KEY=sk-...
# Or GROQ_API_KEY=gsk_...
Step 1: Setting Up Supabase
Create a Project
- Log in to Supabase Dashboard > New Project > Name it "ai-chatbot".
- Note the URL and anon key—add to .env.local.
Database Schema
We'll need tables for users (auto from auth), chat messages, and a knowledge base for RAG.
Run in SQL Editor:
-- Enable pgvector extension
CREATE EXTENSION IF NOT EXISTS vector;
-- Messages table (with RLS)
CREATE TABLE messages (
  id UUID DEFAULT gen_random_uuid() PRIMARY KEY,
  user_id UUID REFERENCES auth.users(id) ON DELETE CASCADE,
  role TEXT NOT NULL CHECK (role IN ('user', 'assistant')),
  content TEXT NOT NULL,
  created_at TIMESTAMP WITH TIME ZONE DEFAULT NOW()
);
-- Knowledge base for RAG
CREATE TABLE knowledge (
  id UUID DEFAULT gen_random_uuid() PRIMARY KEY,
  content TEXT NOT NULL,
  metadata JSONB DEFAULT '{}',
  embedding VECTOR(1536)  -- OpenAI dimension
);
-- Index for vector search
CREATE INDEX ON knowledge USING ivfflat (embedding vector_cosine_ops);
-- RLS policies
ALTER TABLE messages ENABLE ROW LEVEL SECURITY;
CREATE POLICY "Users can view own messages" ON messages FOR SELECT USING (auth.uid() = user_id);
CREATE POLICY "Users can insert own messages" ON messages FOR INSERT WITH CHECK (auth.uid() = user_id);
ALTER TABLE knowledge ENABLE ROW LEVEL SECURITY;
CREATE POLICY "Public read for knowledge" ON knowledge FOR SELECT USING (true);
Authentication
Supabase auth is plug-and-play. We'll use email/password for simplicity, but add social later.
In src/lib/supabaseClient.ts:
import { createClient } from '@supabase/supabase-js'
const supabaseUrl = process.env.NEXT_PUBLIC_SUPABASE_URL!
const supabaseAnonKey = process.env.NEXT_PUBLIC_SUPABASE_ANON_KEY!
export const supabase = createClient(supabaseUrl, supabaseAnonKey)
Test it: Create a sign-up API route later.
Ingest Knowledge for RAG
To populate the knowledge table, we'll embed sample docs. Use OpenAI embeddings.
Create src/utils/embed.ts:
import OpenAI from 'openai'
import { supabase } from '@/lib/supabaseClient'
const openai = new OpenAI({ apiKey: process.env.OPENAI_API_KEY })
export async function embedAndStore(text: string, metadata: object = {}) {
  const { data: embedding } = await openai.embeddings.create({
    model: 'text-embedding-3-small',
    input: text,
  })
  const { error } = await supabase
    .from('knowledge')
    .insert({ content: text, metadata, embedding: embedding[0].embedding })
  if (error) throw error
}
Seed some data (run in a script):
// scripts/seed.js
import { embedAndStore } from '../src/utils/embed'
await embedAndStore('Elysiate builds custom web applications using Next.js and React.', { category: 'services' })
await embedAndStore('AI integrations at Elysiate include chatbots and RAG systems.', { category: 'ai' })
// Add 10-20 docs...
Step 2: Building the Chatbot UI in Next.js
Create a chat interface with message history, input, and loading states.
In src/app/chat/page.tsx:
'use client'
import { useState, useRef, useEffect } from 'react'
import { createClientComponentClient } from '@supabase/auth-helpers-nextjs'
export default function ChatPage() {
  const [messages, setMessages] = useState<{ role: string; content: string }[]>([])
  const [input, setInput] = useState('')
  const [loading, setLoading] = useState(false)
  const supabase = createClientComponentClient()
  const messagesEndRef = useRef<HTMLDivElement>(null)
  const scrollToBottom = () => {
    messagesEndRef.current?.scrollIntoView({ behavior: 'smooth' })
  }
  useEffect(() => {
    scrollToBottom()
  }, [messages])
  // Fetch user messages on load
  useEffect(() => {
    fetchMessages()
  }, [])
  async function fetchMessages() {
    const { data: { user } } = await supabase.auth.getUser()
    if (!user) return
    const { data } = await supabase
      .from('messages')
      .select('*')
      .eq('user_id', user.id)
      .order('created_at', { ascending: true })
    setMessages(data?.map(m => ({ role: m.role, content: m.content })) || [])
  }
  async function sendMessage() {
    if (!input.trim() || loading) return
    const userMessage = { role: 'user', content: input }
    setMessages(prev => [...prev, userMessage])
    setLoading(true)
    // Save user message
    const { data: { user } } = await supabase.auth.getUser()
    await supabase.from('messages').insert({
      user_id: user!.id,
      role: 'user',
      content: input
    })
    setInput('')
    // AI response handled in next step
    const response = await generateResponse(input)
    const assistantMessage = { role: 'assistant', content: response }
    setMessages(prev => [...prev, assistantMessage])
    await supabase.from('messages').insert({
      user_id: user!.id,
      role: 'assistant',
      content: response
    })
    setLoading(false)
  }
  return (
    <div className="flex flex-col h-screen max-w-2xl mx-auto p-4">
      <h1 className="text-2xl font-bold mb-4">AI Chatbot</h1>
      <div className="flex-1 overflow-y-auto border p-4 rounded mb-4 bg-gray-50">
        {messages.map((msg, i) => (
          <div key={i} className={`mb-4 ${msg.role === 'user' ? 'text-right' : 'text-left'}`}>
            <div className={`inline-block p-2 rounded ${msg.role === 'user' ? 'bg-blue-500 text-white' : 'bg-gray-200'}`}>
              {msg.content}
            </div>
          </div>
        ))}
        {loading && <div className="text-left mb-4">Typing...</div>}
        <div ref={messagesEndRef} />
      </div>
      <div className="flex">
        <input
          type="text"
          value={input}
          onChange={e => setInput(e.target.value)}
          onKeyPress={e => e.key === 'Enter' && sendMessage()}
          className="flex-1 p-2 border rounded-l"
          placeholder="Ask me anything..."
          disabled={loading}
        />
        <button onClick={sendMessage} disabled={loading} className="p-2 bg-blue-500 text-white rounded-r">
          Send
        </button>
      </div>
    </div>
  )
}
This gives a basic, scrollable chat UI. Auth check ensures only logged-in users chat.
Step 3: Integrating Vercel AI SDK for Streaming Responses
Vercel AI SDK makes LLM calls declarative with useChat hook.
First, install if not: npm install ai (Vercel AI is 'ai').
Update sendMessage to use AI SDK. Create an API route for the AI logic: src/app/api/chat/route.ts.
import { OpenAIStream, StreamingTextResponse } from 'ai'
import OpenAI from 'openai'
import { NextRequest } from 'next/server'
const openai = new OpenAI({ apiKey: process.env.OPENAI_API_KEY })
export async function POST(req: NextRequest) {
  const { messages } = await req.json()
  const response = await openai.chat.completions.create({
    model: 'gpt-4o-mini',
    stream: true,
    messages,
  })
  const stream = OpenAIStream(response)
  return new StreamingTextResponse(stream)
}
Now, in the chat page, use useChat:
'use client'
import { useChat } from 'ai/react'
import { useEffect } from 'react'
// ... other imports
export default function ChatPage() {
  const { messages, input, handleInputChange, handleSubmit, isLoading } = useChat({
    api: '/api/chat',
  })
  const supabase = createClientComponentClient()
  // Save messages to Supabase on submit
  useEffect(() => {
    if (messages.length > 0) {
      // Logic to save, but for streaming, save after
    }
  }, [messages])
  return (
    // ... UI, but use handleSubmit instead of sendMessage
    <form onSubmit={handleSubmit} className="flex">
      <input
        value={input}
        onChange={handleInputChange}
        className="flex-1 p-2 border rounded-l"
        placeholder="Ask me anything..."
      />
      <button type="submit" disabled={isLoading} className="p-2 bg-blue-500 text-white rounded-r">
        Send
      </button>
    </form>
    // Messages render from useChat's messages, with append for streaming
  )
}
useChat handles streaming automatically—responses appear token-by-token for natural feel. For Supabase persistence, append a callback to save full response after stream ends.
Step 4: Adding RAG with Supabase Vectors
To ground responses in your data, implement RAG: Embed query, search knowledge, inject context into prompt.
Update /api/chat/route.ts:
import { supabase } from '@/lib/supabaseClient'
import OpenAI from 'openai'
// ... 
export async function POST(req: NextRequest) {
  const { messages } = await req.json()
  const query = messages[messages.length - 1].content
  // Embed query
  const { data: queryEmbedding } = await openai.embeddings.create({
    model: 'text-embedding-3-small',
    input: query,
  })
  // Vector search
  const { data: knowledge } = await supabase.rpc('match_documents', {
    query_embedding: queryEmbedding[0].embedding,
    match_threshold: 0.78,
    match_count: 3
  })
  const context = knowledge.map(k => k.content).join('\n\n')
  const prompt = [
    { role: 'system', content: `You are a helpful assistant. Use this context to answer: ${context}. If not relevant, say so.` },
    ...messages
  ]
  const response = await openai.chat.completions.create({
    model: 'gpt-4o-mini',
    stream: true,
    messages: prompt,
  })
  // ... stream as before
}
Add RPC in Supabase SQL:
CREATE OR REPLACE FUNCTION match_documents(
  query_embedding VECTOR(1536),
  match_threshold FLOAT,
  match_count INT
)
RETURNS TABLE (id UUID, content TEXT, metadata JSONB, similarity FLOAT)
LANGUAGE SQL STABLE
AS $$
  SELECT
    knowledge.id,
    knowledge.content,
    knowledge.metadata,
    1 - (knowledge.embedding <=> query_embedding) AS similarity
  FROM knowledge
  WHERE 1 - (knowledge.embedding <=> query_embedding) > match_threshold
  ORDER BY knowledge.embedding <=> query_embedding
  LIMIT match_count;
$$;
This ensures responses are factual, citing your Elysiate services or docs.
Step 5: Authentication and User Sessions
Integrate Supabase auth for personalized chats.
Add sign-up/login pages or use a modal. In src/app/layout.tsx, wrap with Supabase provider:
import { createServerComponentSupabaseClient } from '@supabase/auth-helpers-nextjs'
import { cookies } from 'next/headers'
// In middleware or layout for session
For client: Use createClientComponentClient as above.
In chat page, check session:
const { data: { session } } = await supabase.auth.getSession()
if (!session) {
  // Redirect to login
  redirect('/auth/login')
}
Save messages per user as shown earlier. For multi-turn, load history on mount.
Step 6: Deployment on Vercel
- Push to GitHub.
- Connect to Vercel > Import project.
- Add env vars in Vercel dashboard (Supabase keys, OpenAI key).
- Deploy—edge functions auto-optimize.
Test: https://your-project.vercel.app/chat. Monitor with Vercel Analytics.
Advanced Tips and Optimizations
- Caching: Use Vercel KV or Supabase for response caching (hash query + context).
- Rate Limiting: Add upstash-ratelimitfor API protection.
- Error Handling: In AI SDK, use onErrorfor fallbacks (e.g., 'Sorry, try rephrasing').
- Multi-Provider: Switch models dynamically: Groq for speed, OpenAI for accuracy.
- Real-Time: Use Supabase Realtime for collaborative chats.
- Monitoring: Integrate Sentry or Vercel Logs; track token usage.
- Security: Sanitize inputs, validate embeddings, RLS prevents data leaks.
For 2025 scale: Consider fine-tuning on chat logs (with privacy), or hybrid search (SQL + vectors).
Real-World Example: Elysiate's Client Chatbot
At Elysiate, we deployed this stack for a fintech client's support bot. It handles queries on account setup, pulling from secure docs via RAG, with auth tied to user profiles. Result: 40% deflection rate, sub-1s responses globally. We iterated with A/B tests on prompts, reducing hallucinations by 25%. If you're building similar, contact us for a custom audit.
Conclusion
You've now built a full-stack AI chatbot: secure, intelligent, and scalable. This Supabase + Vercel AI combo empowers rapid iteration—start simple, add voice (via Web Speech API) or mobile (React Native). Experiment with the code, deploy it, and watch engagement soar.
Key Takeaways:
- Stack simplicity accelerates MVPs.
- RAG grounds AI in reality—always evaluate retrieval quality.
- Streaming + auth = delightful UX.
Fork the repo, tweak for your use case, and share your builds! Questions? Reach out on Twitter or book a consult at Elysiate.
Word count: ~2800. Built with ❤️ by Elysiate—your AI product studio.