NLP with Transformers: Practical Guide (2025)

Oct 26, 2025
nlptransformersbertt5
0

Transformers power modern NLP across tasks. This guide focuses on practical implementation using Hugging Face/Transformers with clear recipes for training, evaluation, and deployment.

Executive summary

  • Start with strong baselines (BERT/RoBERTa/DeBERTa for encoders, T5/Llama for seq2seq)
  • Prefer parameter-efficient fine-tuning (LoRA/QLoRA) and distilled models for latency
  • Evaluate with task-specific metrics; monitor drift and toxicity/safety in production

Core tasks

Text classification

from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer, TrainingArguments

tok = AutoTokenizer.from_pretrained("roberta-base")
model = AutoModelForSequenceClassification.from_pretrained("roberta-base", num_labels=2)

# tokenize + Trainer omitted for brevity

Question answering

from transformers import AutoModelForQuestionAnswering
model = AutoModelForQuestionAnswering.from_pretrained("deberta-base")

Summarization

from transformers import AutoModelForSeq2SeqLM
model = AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-large")

Efficiency strategies

  • Distillation (TinyBERT, DistilBERT), quantization (8/4-bit), pruning
  • Batch inference, dynamic batching, sequence bucketing

Evaluation

  • Classification: accuracy/F1/AUROC; calibrate thresholds
  • QA: EM/F1; Summarization: ROUGE/BERTScore; Toxicity: perspective-like proxies

Deployment

  • REST/gRPC microservices; async batching; autoscale by QPS
  • Content moderation and safety filters; rate limiting; audit

Monitoring and drift

  • Track input distributions, label frequencies, error clusters
  • Add online feedback loops; periodic re-training triggers

FAQ

Q: Which model should I start with?
A: For encoders: RoBERTa/DeBERTa; for seq2seq: FLAN‑T5; for generative chat: Llama‑3/4‑class equivalents.


Executive Summary

This guide offers a practical and production-focused playbook for modern NLP with Transformers: data preparation, tokenization, model selection, training/evaluation, inference optimization, deployment, monitoring, cost control, and governance, with ready-to-use code.


Tokenization (BPE / WordPiece)

from tokenizers import Tokenizer
from tokenizers.models import BPE
from tokenizers.trainers import BpeTrainer
from tokenizers.pre_tokenizers import Whitespace

tok = Tokenizer(BPE(unk_token="<unk>"))
tok.pre_tokenizer = Whitespace()
trainer = BpeTrainer(vocab_size=32000, special_tokens=["<pad>","<s>","</s>","<unk>"])
tok.train(files=["corpus.txt"], trainer=trainer)
tok.save("bpe.json")
from transformers import AutoTokenizer
wp = AutoTokenizer.from_pretrained("bert-base-uncased")
wp("Transformers are great for NLP!")

Datasets and Preprocessing

from datasets import load_dataset
raw = load_dataset("imdb")

def preprocess(batch):
    x = tok.encode_batch(batch["text"])
    return {"input_ids": [e.ids for e in x], "attention_mask": [e.attention_mask for e in x]}

proc = raw.map(preprocess, batched=True, remove_columns=["text"])
proc = proc.rename_column("label", "labels").with_format("torch")

Hugging Face Transformers (Trainer)

from transformers import AutoModelForSequenceClassification, TrainingArguments, Trainer
model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased", num_labels=2)
args = TrainingArguments(
    output_dir="out",
    per_device_train_batch_size=16,
    per_device_eval_batch_size=32,
    learning_rate=2e-5,
    num_train_epochs=3,
    evaluation_strategy="steps",
    logging_steps=100,
    save_steps=1000,
    fp16=True
)
trainer = Trainer(model=model, args=args, train_dataset=proc["train"], eval_dataset=proc["test"])
trainer.train()

Accelerate (Multi-GPU)

from accelerate import Accelerator
accelerator = Accelerator()
model, optimizer, train_dl = accelerator.prepare(model, optimizer, train_dl)
for batch in train_dl:
    with accelerator.autocast():
        out = model(**batch)
        loss = out.loss
    accelerator.backward(loss)
    optimizer.step(); optimizer.zero_grad()

Core Tasks

Text Classification

from transformers import AutoModelForSequenceClassification
model = AutoModelForSequenceClassification.from_pretrained("roberta-base", num_labels=5)

Named Entity Recognition (NER)

from transformers import AutoModelForTokenClassification
ner = AutoModelForTokenClassification.from_pretrained("bert-base-cased", num_labels=9)

Question Answering (Extractive)

from transformers import AutoModelForQuestionAnswering
qa = AutoModelForQuestionAnswering.from_pretrained("distilbert-base-cased")

Summarization

from transformers import pipeline
summ = pipeline("summarization", model="facebook/bart-large-cnn")
summ("Long article...")

Translation

from transformers import pipeline
trans = pipeline("translation_en_to_de", model="Helsinki-NLP/opus-mt-en-de")
trans("Hello world!")

PyTorch Training Loop

import torch
from torch.utils.data import DataLoader

train_dl = DataLoader(proc["train"], batch_size=16, shuffle=True)
model.train(); opt = torch.optim.AdamW(model.parameters(), lr=2e-5)
for batch in train_dl:
    out = model(**{k: v.to(model.device) for k, v in batch.items() if k in ["input_ids","attention_mask","labels"]})
    loss = out.loss
    opt.zero_grad(); loss.backward(); opt.step()

Evaluation Metrics

from sklearn.metrics import accuracy_score, f1_score

def cls_metrics(pred):
    y_true = pred.label_ids
    y_pred = pred.predictions.argmax(-1)
    return {"acc": accuracy_score(y_true, y_pred), "f1": f1_score(y_true, y_pred, average="weighted")}
# ROUGE for summarization
from datasets import load_metric
rouge = load_metric("rouge")
# BLEU/SacreBLEU for translation
sacre = load_metric("sacrebleu")
# Perplexity
import math
ppl = math.exp(eval_loss)

Prompting and In-Context Learning (ICL)

- Provide few-shot examples with consistent formatting
- Use system messages to set behavior and constraints
- For structured outputs, request JSON and validate schema

LoRA / PEFT Fine-Tuning

from peft import LoraConfig, get_peft_model
config = LoraConfig(r=16, lora_alpha=32, lora_dropout=0.05, target_modules=["q_proj","v_proj"])
model = get_peft_model(model, config)

Distillation and Quantization

# Distillation sketch: teacher → student logits
student_out = student(**batch)
with torch.no_grad(): teacher_out = teacher(**batch)
loss = kd_loss(student_out.logits, teacher_out.logits) + ce_loss(student_out.logits, batch["labels"])
# Dynamic quantization (PyTorch)
from torch.quantization import quantize_dynamic
qmodel = quantize_dynamic(model, {torch.nn.Linear}, dtype=torch.qint8)

Retrieval Augmentation Hooks (Simple)

def retrieve_context(query: str):
    # call vector store or BM25 index
    return "context snippets..."

def build_prompt(q: str):
    ctx = retrieve_context(q)
    return f"Use CONTEXT to answer. CONTEXT: {ctx}\nQ: {q}\nA:"

Deployment (FastAPI)

from fastapi import FastAPI
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
app = FastAPI()

tok = AutoTokenizer.from_pretrained("distilbert-base-uncased")
mdl = AutoModelForSequenceClassification.from_pretrained("./out").eval()

@app.post("/classify")
def classify(body: dict):
    enc = tok(body["text"], return_tensors="pt", truncation=True, padding=True)
    with torch.no_grad(): out = mdl(**enc)
    probs = out.logits.softmax(-1).tolist()[0]
    return {"probs": probs}

ONNX Runtime / TFLite

import onnxruntime as ort
sess = ort.InferenceSession("model.onnx", providers=["CPUExecutionProvider"])
import tensorflow as tf
converter = tf.lite.TFLiteConverter.from_saved_model("./saved")
converter.optimizations = [tf.lite.Optimize.DEFAULT]

KServe / Triton Serving

apiVersion: serving.kserve.io/v1beta1
kind: InferenceService
metadata: { name: nlp, namespace: ml }
spec:
  predictor:
    triton:
      storageUri: s3://bucket/models/nlp
      runtimeVersion: 23.09

Streaming and Batching

// client-side streaming (SSE)
const src = new EventSource('/api/stream');
src.onmessage = (e) => render(e.data)
# server-side dynamic batching sketch
queue = []
if len(queue) >= BATCH or waited_ms > MAX_WAIT: run_batch(queue)

Monitoring (Prometheus/OTEL)

import client from 'prom-client'
const latency = new client.Histogram({ name: 'nlp_latency_seconds', help: 'latency', buckets: [0.01,0.05,0.1,0.2,0.5,1,2] })
span.setAttributes({ 'model': 'distilbert', 'route': '/classify' })

Cost Modeling

model,price_in,price_out,avg_in_tokens,avg_out_tokens,cost_usd_per_req
small,0.000001,0.000002,200,50,0.0003
medium,0.000004,0.000012,500,150,0.002

Security and Privacy (PII Redaction)

const PII = [/\b\d{3}-\d{2}-\d{4}\b/, /\b\d{16}\b/, /[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Za-z]{2,}/]
export function redact(s: string){ return PII.reduce((a,r)=>a.replace(r,'[REDACTED]'), s) }

JSON-LD



Call to Action

Need help shipping NLP systems? We design data pipelines, train/optimize models, and deploy reliable NLP services with monitoring and guardrails.


Extended FAQ (1–150)

  1. Which model for classification?
    Start with DistilBERT/roberta-base; fine-tune.

  2. Sequence length?
    Set to cover 95th percentile; consider long-context models.

  3. Batch size vs GPU memory?
    Find max without OOM; use gradient accumulation.

  4. Mixed precision?
    Enable FP16/bfloat16; validate stability.

  5. Tokenization mismatches?
    Use tokenizer and model from same family.

  6. Learning rate?
    2e-5 to 5e-5 typical for BERT-like.

  7. Warmup steps?
    5%–10% of total steps.

  8. Early stopping?
    Monitor eval loss/F1.

  9. ROUGE vs BLEU?
    ROUGE for summarization; BLEU/SacreBLEU for translation.

  10. Perplexity usage?
    Language modeling evaluation.

  11. Class imbalance?
    Weighted loss or resampling.

  12. Data leakage?
    Split on entity/author; dedupe.

  13. Hyperparameter sweeps?
    Use optuna/W&B sweeps.

  14. Domain adaptation?
    Continue pretraining on domain data.

  15. Inference speed?
    Use ONNX Runtime, quantization, and small models.

  16. Long documents?
    Sliding window or longformer/bigbird.

  17. Caching?
    Memoize frequent requests; TTL caches.

  18. Retries/timeouts?
    Set client/server timeouts; idempotence.

  19. PII handling?
    Redact and avoid logging raw text.

  20. SLOs?
    Latency p95 and error rate.

... (add 130+ practical Q/A on training, eval, deployment, monitoring, costs, privacy)


Advanced Tokenizers (SentencePiece)

spm_train --input=corpus.txt --model_prefix=spm --vocab_size=32000 --character_coverage=0.9995 --model_type=bpe --input_sentence_size=10000000 --shuffle_input_sentence=true
import sentencepiece as spm
sp = spm.SentencePieceProcessor(); sp.load('spm.model')
ids = sp.encode('Transformers at scale', out_type=int)

Data Cleaning and Normalization

import re, unicodedata

def clean(text: str) -> str:
    t = unicodedata.normalize('NFKC', text)
    t = re.sub(r"\s+", " ", t).strip()
    t = re.sub(r"[\u200B-\u200D\uFEFF]", "", t)  # zero-width
    return t

Seq2Seq Training (T5/BART)

from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, DataCollatorForSeq2Seq, Trainer, TrainingArguments

model_name = 't5-base'
tok = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)

def preprocess(ex):
    x = tok(ex['input_text'], truncation=True, padding=False)
    y = tok(ex['target_text'], truncation=True, padding=False)
    x['labels'] = y['input_ids']
    return x

collator = DataCollatorForSeq2Seq(tok, model=model)
args = TrainingArguments('out', per_device_train_batch_size=8, eval_strategy='steps', save_steps=1000, fp16=True)
trainer = Trainer(model=model, args=args, train_dataset=train, eval_dataset=val, data_collator=collator)
trainer.train()

Span Masking for Pretraining

# T5-style span corruption
def span_mask(ids, mask_ratio=0.15, mean_span=3):
    # replace spans with single sentinel tokens; build targets of spans
    pass

Contrastive Objectives (Text/Embed)

# InfoNCE for sentence embeddings
z = encoder(x)
z = torch.nn.functional.normalize(z, dim=1)
sim = z @ z.T / tau
labels = torch.arange(z.size(0), device=z.device)
loss = torch.nn.CrossEntropyLoss()(sim, labels)

Preference Optimization (DPO/ORPO) Sketch

# DPO-like fine-tuning: maximize log p(preferred) - log p(rejected) under reference KL
# ORPO-like: combine task loss with preference loss; monitor KL divergence

PEFT Guidance

- Target modules: q_proj, v_proj (common); include k_proj/o_proj for stronger adaptation
- r (rank): 8–16 (small), 32+ (larger)
- alpha: 16–64; dropout: 0.0–0.1; tune per task
- Merge vs adapters: merge for speed; adapters for flexibility

Retrieval Hooks

from rank_bm25 import BM25Okapi
bm25 = BM25Okapi([doc.split() for doc in corpus])

def retrieve(q): return bm25.get_top_n(q.split(), corpus, n=10)
# vector search placeholder: use FAISS/Weaviate/Qdrant

Reranking (Cross-Encoder)

from sentence_transformers import CrossEncoder
reranker = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')

def rerank(q, candidates):
    scores = reranker.predict([(q, c) for c in candidates])
    return [c for _, c in sorted(zip(scores, candidates), reverse=True)]

Structured Generation with JSON Schema and Repair

import json
from jsonschema import validate, ValidationError

schema = {"type":"object","properties":{"title":{"type":"string"},"bullets":{"type":"array","items":{"type":"string"}}},"required":["title","bullets"],"additionalProperties":False}

def repair_loop(gen_fn, prompt, schema, retries=2):
    out = gen_fn(prompt)
    for _ in range(retries+1):
        try:
            obj = json.loads(out); validate(obj, schema); return obj
        except (json.JSONDecodeError, ValidationError):
            out = gen_fn(f"Fix JSON to match schema: {schema}. Previous: {out}")
    raise ValueError('invalid json')

Streaming Generation APIs

// SSE stream endpoint
app.post('/stream', async (req, res) => {
  res.setHeader('Content-Type', 'text/event-stream')
  for await (const token of generate(req.body)) res.write(`data: ${token}\n\n`)
  res.end()
})

FastAPI / gRPC Servers

from fastapi import FastAPI
from pydantic import BaseModel
class Body(BaseModel): text: str

app = FastAPI()
@app.post('/classify')
async def classify(b: Body):
    enc = tok(b.text, return_tensors='pt')
    with torch.no_grad(): out = model(**enc)
    return {'probs': out.logits.softmax(-1).tolist()[0]}
# grpc server stub (sketch)

KServe Transformer / Explainer

from kserve import Model, ModelServer
class PrePost(Model):
    async def preprocess(self, payload): return payload
    async def postprocess(self, out): return out
ModelServer().start([PrePost('nlp')])

Optimization (ONNX/TensorRT)

python -m onnxsim model.onnx model_sim.onnx
trtexec --onnx=model_sim.onnx --saveEngine=model.plan --fp16

Cache Strategies

const cache = new Map<string, any>()
function key(txt: string){ return hash(txt) }
export async function cachedGen(txt: string){ const k = key(txt); if (cache.has(k)) return cache.get(k); const r = await gen(txt); cache.set(k,r); return r }

A/B Testing Harness

function bucket(id: string){ return hash(id) % 2 ? 'A' : 'B' }

Prometheus / Grafana / PromQL

const cost = new client.Counter({ name: 'nlp_cost_usd_total', help: 'cost' })
histogram_quantile(0.95, sum by (le) (rate(nlp_latency_seconds_bucket[5m])))
sum by (route) (rate(nlp_cost_usd_total[1m]))

OpenTelemetry Traces

span.setAttributes({ 'nlp.model': 't5-base', 'nlp.task': 'summarization' })
span.addEvent('tokenize', { ms: 3 })
span.addEvent('generate', { ms: 120 })

Rate Limits and Budgets

import { RateLimiterMemory } from 'rate-limiter-flexible'
const rl = new RateLimiterMemory({ points: 60, duration: 60 })

PII Detection / Redaction

export function redact(text: string){
  const patterns = [/(\d{3}-\d{2}-\d{4})/g, /\b\d{16}\b/g, /[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Za-z]{2,}/g]
  return patterns.reduce((acc,r)=>acc.replace(r,'[REDACTED]'), text)
}

Compliance SOPs

- Consent and purpose limitation documented
- Retention policy (raw vs derived text)
- PII redaction at ingress and before persistence
- Audit logs with hashed IDs

CI/CD Pipelines

name: nlp-ci
on: [push]
jobs:
  test-build:
    runs-on: ubuntu-latest
    steps:
      - uses: actions/checkout@v4
      - run: pip install -r requirements.txt
      - run: pytest -q
      - run: python export_onnx.py
      - run: docker build -t registry/nlp:$(git rev-parse --short HEAD) .

Cost Calculators

scenario,req_per_day,tokens_in,tokens_out,price_in,price_out,cost_usd_day
base,250000,500,100,0.000004,0.000012,?  

Runbooks

Latency Spike
- Check model size and batching; switch to ONNX/TensorRT
- Reduce max tokens; cache hot prompts

Cost Spike
- Inspect route traffic; enforce budgets; smaller models

Extended FAQ (151–400)

  1. Which model for NER?
    BERT base cased fine-tuned on CoNLL.

  2. GPU vs CPU?
    GPU for training/large inference; CPU for small models.

  3. How to reduce hallucinations?
    RAG with good retrieval and reranking.

  4. Improving summarization?
    Constrain length; domain fine-tuning.

  5. Long-context?
    Use Longformer/BigBird or chunking.

  6. JSON correctness?
    Schema validation + repair loop.

  7. Safe prompts?
    Explicit refusals; avoid secrets.

  8. Drift detection?
    Monitor distributions and confidence.

  9. Embeddings?
    Use sentence-transformers for search.

  10. Token budget?
    Trim inputs; compress; cache.

... (continue with 240+ pragmatic Q/A on tasks, training, eval, deployment, monitoring, costs, privacy)


Data Pipelines at Scale (Cleaning, Filtering, Dedupe, Lang-ID)

import re, unicodedata
from lingua import Language, LanguageDetectorBuilder

detector = LanguageDetectorBuilder.from_all_languages().build()

def normalize_text(t: str) -> str:
    t = unicodedata.normalize('NFKC', t)
    t = re.sub(r"[\u200B-\u200D\uFEFF]", "", t)
    t = re.sub(r"\s+", " ", t).strip()
    return t

def is_english(t: str) -> bool:
    lang = detector.detect_language_of(t)
    return lang and lang.iso_code_639_1.name.lower() == 'en'

seen = set()

def dedupe_key(t: str) -> str:
    return re.sub(r"\W+", "", t.lower())[:128]
# Filtering pipeline (pseudo)
for rec in stream_jsonl('corpus.jsonl'):
    txt = normalize_text(rec['text'])
    if len(txt) < 32: continue
    if not is_english(txt): continue
    k = dedupe_key(txt)
    if k in seen: continue
    seen.add(k)
    yield { 'text': txt }

SentencePiece Training Script (Full)

spm_train \
  --input=clean_corpus.txt \
  --model_prefix=spm_en_32k \
  --vocab_size=32000 \
  --model_type=bpe \
  --character_coverage=0.9995 \
  --input_sentence_size=20000000 \
  --shuffle_input_sentence=true \
  --num_threads=8
import sentencepiece as spm
sp = spm.SentencePieceProcessor(); sp.load('spm_en_32k.model')
print(sp.encode('NLP at scale', out_type=int))

Seq2Seq Recipes: Summarization (BART/T5)

from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, DataCollatorForSeq2Seq, Trainer, TrainingArguments
from datasets import load_dataset

raw = load_dataset('cnn_dailymail', '3.0.0')
model_id = 'facebook/bart-base'
tok = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForSeq2SeqLM.from_pretrained(model_id)

max_in, max_out = 1024, 128

def prep(ex):
    x = tok(ex['article'], truncation=True, max_length=max_in)
    with tok.as_target_tokenizer(): y = tok(ex['highlights'], truncation=True, max_length=max_out)
    x['labels'] = y['input_ids']; return x

ds = raw.map(prep, batched=True, remove_columns=raw['train'].column_names)
collate = DataCollatorForSeq2Seq(tok, model=model)
args = TrainingArguments('out/bart', per_device_train_batch_size=4, gradient_accumulation_steps=8, lr_scheduler_type='cosine', learning_rate=3e-5, num_train_epochs=3, evaluation_strategy='steps', save_steps=1000, fp16=True)
trainer = Trainer(model=model, args=args, train_dataset=ds['train'], eval_dataset=ds['validation'], data_collator=collate)
trainer.train()

Translation (MarianMT) and QA (T5) Sketches

from transformers import MarianMTModel, MarianTokenizer
src_tgt = 'Helsinki-NLP/opus-mt-en-de'; tok = MarianTokenizer.from_pretrained(src_tgt); mt = MarianMTModel.from_pretrained(src_tgt)
from transformers import T5ForConditionalGeneration
# input: question + context; output: answer

Pretraining Objectives (MLM/Span/UL2)

# MLM masking
import torch
mask_prob = 0.15
mask_token_id = tok.mask_token_id
x = batch['input_ids'].clone()
mask = torch.rand_like(x.float()) < mask_prob
x[mask] = mask_token_id
# UL2 variants: short infilling vs long span corruption (concept)

DPO/ORPO Fine-Tuning (Sketch)

# DPO: given (prompt, chosen, rejected)
# optimize log p(chosen) - log p(rejected) under reference KL
# ORPO: L_total = L_task + beta * L_preference; monitor divergence

PEFT Recipes (LoRA/IA3/DoRA)

from peft import LoraConfig, get_peft_model
cfg = LoraConfig(r=16, lora_alpha=32, lora_dropout=0.05, target_modules=['q_proj','v_proj'])
model = get_peft_model(model, cfg)
- IA3: multiplicative adapters on attention/FFN
- DoRA: decomposed LoRA for stability in some tasks

RAG End-to-End (BM25 + Vector + Reranking)

from rank_bm25 import BM25Okapi
from sentence_transformers import SentenceTransformer
bm25 = BM25Okapi([d.split() for d in docs])
vec = SentenceTransformer('all-MiniLM-L6-v2')

def retrieve(q, k=40):
    cands = bm25.get_top_n(q.split(), docs, n=k)
    embsQ = vec.encode([q])
    embsC = vec.encode(cands)
    # cosine scores + bm25 scores
    return cands[:k]
# rerank with cross-encoder

Structured Generation: JSON + Repair Loop

from jsonschema import validate, ValidationError
schema = { 'type':'object','properties':{ 'title':{'type':'string'}, 'items':{'type':'array','items':{'type':'string'}} }, 'required':['title','items'], 'additionalProperties':False }

def gen_and_validate(prompt):
    out = llm(prompt)
    for _ in range(3):
        try:
            obj = json.loads(out); validate(obj, schema); return obj
        except Exception:
            out = llm(f"Fix JSON to match schema: {schema}. Input: {out}")
    raise ValueError('bad json')

FastAPI + gRPC Servers

from fastapi import FastAPI
from pydantic import BaseModel
class Req(BaseModel): text: str
app = FastAPI()
@app.post('/embed')
async def embed(r: Req):
    v = encoder.encode([r.text])[0].tolist(); return { 'vector': v }
# gRPC service definitions and server impl (proto + server) — omitted for brevity

Streaming + Batching

# micro-batching queue for high-throughput inference
queue = []
if len(queue) >= BATCH or waited_ms > MAX_WAIT: run_batch(queue)

Export and Validate (ONNX/TensorRT/TFLite)

python -m onnxruntime.tools.convert_bert --input model.onnx --float16 --output model_fp16.onnx
trtexec --onnx=model_fp16.onnx --saveEngine=model.plan --fp16
# parity test
out_native = model(**enc).logits
out_onnx = ort_session.run(None, { 'input_ids': enc['input_ids'].numpy(), 'attention_mask': enc['attention_mask'].numpy() })[0]

KServe Transformer/Explainer (Code)

from kserve import Model, ModelServer
class NlpTransformer(Model):
    async def preprocess(self, payload): return payload
    async def postprocess(self, out): return out
ModelServer().start([NlpTransformer('nlp')])

A/B Testing and Routing

function variant(userId: string){ return hash(userId) % 2 ? 'A' : 'B' }

Dashboards (PromQL)

# latency p95
histogram_quantile(0.95, sum by (le) (rate(nlp_latency_seconds_bucket[5m])))
# cost/min
sum(rate(nlp_cost_usd_total[1m]))

OpenTelemetry Traces

span.setAttributes({ 'nlp.task': 'classification', 'nlp.model': 'roberta-base' })
span.addEvent('tokenize', { ms: 4 })
span.addEvent('infer', { ms: 28 })

Rate Limits and Budgets

import { RateLimiterMemory } from 'rate-limiter-flexible'
const limiter = new RateLimiterMemory({ points: 120, duration: 60 })

Privacy/PII and Compliance SOPs

- Redact PII at ingress; hash request IDs; keep minimal logs
- Consent and purpose limitation documented; regional routing
- Data deletion workflows (DSAR) supported and tested

CI/CD Pipelines

name: nlp-deploy
on: [push]
jobs:
  build:
    runs-on: ubuntu-latest
    steps:
      - uses: actions/checkout@v4
      - run: pip install -r requirements.txt
      - run: pytest -q
      - run: python export_onnx.py
      - run: docker build -t registry/nlp:${{ github.sha }} .
      - run: docker push registry/nlp:${{ github.sha }}
      - run: helm upgrade --install nlp charts/nlp --set image.tag=${{ github.sha }} --wait

Runbooks

Latency Spike
- Reduce max tokens; switch to ONNX/TensorRT; verify batch sizes; warm caches

Cost Spike
- Enforce budgets; cache hot prompts; route smaller models

Quality Drop
- Re-evaluate on golden set; rollback; inspect retrieval quality (RAG)

Extended FAQ (401–900)

  1. Long prompts?
    Compress inputs; retrieve only relevant context.

  2. Few-shot example selection?
    Diverse and representative; 2–5 shots.

  3. Beam search vs sampling?
    Beam for deterministic tasks; sampling for creative.

  4. Top-k vs top-p?
    Tune per task; typical p=0.9, k=40.

  5. LoRA targets?
    q_proj/v_proj minimal; add k/o for tougher tasks.

  6. Instruction tuning?
    Curate instructions; eval with held-out tasks.

  7. Reranker gains?
    Improves precision; reduces hallucinations.

  8. Token limits?
    Trim history; summarize; compress.

  9. Prompt injection?
    Refusals and sanitization.

  10. JSON validity?
    Schema + repair loop.

  11. Hybrid retrieval?
    BM25 + vectors; rerank.

  12. Cache busting?
    Include relevant vars in key.

  13. Can we batch?
    Yes—dynamic micro-batching.

  14. GPU vs CPU at inference?
    GPU for large; CPU for small models.

  15. Per-tenant budgets?
    Track and enforce.

  16. Lang-detection?
    Fasttext/lingua; route models.

  17. Model drift?
    Re-baseline metrics; A/B.

  18. CLI tools?
    Render prompts, eval suites, evidence packs.

  19. Canary duration?
    24–72h depending on traffic.

  20. PII handling?
    Redact at ingress; DSAR supported.

  21. Tokenizer mismatch?
    Always pair model and tokenizer.

  22. Pack multiple docs?
    Be careful; pad/truncate.

  23. Long-context models?
    Use when needed; cost trade-offs.

  24. Eval cadence?
    Nightly and pre-release gates.

  25. Schema drift?
    Version APIs; migrate clients.

  26. Shadow testing?
    Run on live traffic; no user impact.

  27. Alert thresholds?
    Set conservatively; tune.

  28. Golden sets size?
    100–300; refresh monthly.

  29. Plugins/tooling?
    Validate schemas; timeouts.

  30. Who owns prompts?
    Template owners with approvals.

  31. Offline mode?
    Cache; degrade gracefully.

  32. Secrets in prompts?
    Never; server retrieves.

  33. Compression?
    Summaries and elision.

  34. Latency budgets?
    p95 under target; measure TTFT.

  35. Costs trending up?
    Route smaller models; cache; trim tokens.

  36. Synthetic data?
    Label as synthetic; avoid overfitting.

  37. BLEU pitfalls?
    Use SacreBLEU; consider COMET.

  38. ROUGE pitfalls?
    Not truth; combine with human evals.

  39. Perplexity pitfalls?
    Not overall quality; task-specific metrics.

  40. Translation domain shift?
    Fine-tune on in-domain.

  41. Summarization hallucinations?
    Constrain to citations; RAG.

  42. QA quality?
    Context windows; retrieval quality.

  43. Multilingual?
    Use mT5/mBERT; locale routing.

  44. Legal compliance?
    Document; audits; logs.

  45. Observability privacy?
    Hash IDs; minimize fields.

  46. Token sprawl?
    Budget caps per route.

  47. Where to log?
    Structured logs; warehouse.

  48. Draining traffic?
    Blue/green; feature flags.

  49. Versioning prompts?
    Registry with diffs.

  50. Final acceptance?
    Gates passing; owner approvals; SLOs healthy.


Multilingual Pipelines (mT5 / mBERT)

from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
model_id = 'google/mt5-base'
tok = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForSeq2SeqLM.from_pretrained(model_id)

def translate(text: str, src: str, tgt: str):
    # mT5 approach: prefix with task
    x = tok(f"translate {src} to {tgt}: {text}", return_tensors='pt')
    y = model.generate(**x, max_new_tokens=128)
    return tok.decode(y[0], skip_special_tokens=True)
# Language routing
from lingua import LanguageDetectorBuilder
langs = LanguageDetectorBuilder.from_all_languages().build()

def detect_lang(t: str):
    l = langs.detect_language_of(t)
    return l.iso_code_639_1.name.lower() if l else 'en'

def route_model(lang: str):
    return {
        'en': 'roberta-base',
        'de': 'deepset/gbert-base',
        'es': 'dccuchile/bert-base-spanish-wwm-cased'
    }.get(lang, 'xlm-roberta-base')

Domain Adaptation (Continued Pretraining)

from transformers import AutoModelForMaskedLM, DataCollatorForLanguageModeling, Trainer, TrainingArguments
mdl = AutoModelForMaskedLM.from_pretrained('bert-base-uncased')
collator = DataCollatorForLanguageModeling(tok, mlm_probability=0.15)
args = TrainingArguments('out/continued', per_device_train_batch_size=32, num_train_epochs=1, learning_rate=5e-5, fp16=True)
Trainer(model=mdl, args=args, train_dataset=domain_texts, data_collator=collator).train()

Safety and Fairness

# toxicity detection
from detoxify import Detoxify
tox = Detoxify('original')
score = tox.predict("text")['toxicity']
# bias metrics for classification
import numpy as np

def spd(y_hat, s):
    return float(np.mean(y_hat[s==1]) - np.mean(y_hat[s==0]))

def eod(y_hat, y_true, s):
    tpr1 = np.mean((y_hat==1) & (y_true==1) & (s==1)) / max(1, np.sum((y_true==1) & (s==1)))
    tpr0 = np.mean((y_hat==1) & (y_true==1) & (s==0)) / max(1, np.sum((y_true==1) & (s==0)))
    return float(tpr1 - tpr0)
// PII guard
export function guardPII(text: string){
  const PII = [/(\d{3}-\d{2}-\d{4})/g, /\b\d{16}\b/g, /[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Za-z]{2,}/g]
  return PII.some((r)=>r.test(text))
}

Dataset Creation and QA

import re
from blingfire import text_to_sentences

def quality_score(t: str) -> float:
    sents = text_to_sentences(t).split('\n')
    if len(sents) < 2: return 0.2
    if re.search(r"http(s)?://", t): return 0.6
    return min(1.0, 0.5 + 0.05*len(sents))

clean = [rec for rec in raw if quality_score(rec['text']) >= 0.6]

Retrieval Integration (Weaviate / Qdrant)

# Weaviate example
import weaviate
client = weaviate.Client("http://localhost:8080")
q = client.query.get("Doc", ["text"]).with_near_text({"concepts": ["nlp transformers"]}).with_limit(10).do()
# Qdrant example
import qdrant_client
qc = qdrant_client.QdrantClient(host='localhost', port=6333)
qc.search(collection_name='docs', query_vector=vec.encode([q])[0], limit=10)

Evaluation Harness (Classification + Seq2Seq)

from sklearn.metrics import accuracy_score, f1_score

def eval_cls(model, dl):
    y_true, y_pred = [], []
    for batch in dl:
        with torch.no_grad(): out = model(**batch)
        y_true.extend(batch['labels'].cpu().numpy())
        y_pred.extend(out.logits.argmax(-1).cpu().numpy())
    return { 'acc': accuracy_score(y_true,y_pred), 'f1': f1_score(y_true,y_pred, average='weighted') }
# seq2seq eval: ROUGE/BLEU via datasets.load_metric

Prompt Registry and Versioning

{
  "id": "summary_en_v3",
  "version": 3,
  "prompt": "Summarize: {{text}}",
  "constraints": { "max_tokens": 128 },
  "owners": ["nlp-platform@company.com"],
  "rollout": { "canary": 0.1 }
}

Streaming Clients

// SSE
const src = new EventSource('/api/stream'); src.onmessage = (e) => append(e.data)
// WebSocket
const ws = new WebSocket('wss://api/ws'); ws.onmessage = (m) => render(m.data)

Autoscaling / Helm / Terraform

apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata: { name: nlp }
spec:
  minReplicas: 3
  maxReplicas: 20
  metrics:
    - type: Pods
      pods: { metric: { name: queue_depth }, target: { type: AverageValue, averageValue: 10 } }
resource "aws_eks_node_group" "nlp" {
  scaling_config { desired_size = 3, max_size = 10, min_size = 3 }
  instance_types = ["m6i.2xlarge"]
}

Dashboards / Alerts / Runbooks

# tokens/sec
sum(rate(nlp_tokens_total[1m]))
# error rate
sum(rate(nlp_errors_total[5m]))/sum(rate(nlp_requests_total[5m]))
groups:
- name: nlp
  rules:
  - alert: HighLatency
    expr: histogram_quantile(0.95, sum by (le) (rate(nlp_latency_seconds_bucket[5m]))) > 0.5
    for: 10m
    labels: { severity: page }
Runbook: HighLatency
- Check batching and model route; switch to ONNX/TensorRT; reduce max tokens

Extended FAQ (901–1400)

  1. How to route by language?
    Detect with lingua/fasttext; map to mBERT/mT5.

  2. Domain adaptation cost?
    Continue pretraining for 1–3 epochs; monitor MLM loss.

  3. Toxicity filters?
    Use Detoxify; set thresholds; human review on edge cases.

  4. Deduping large corpora?
    MinHash/SimHash; store hashes.

  5. Retrieval latency?
    Cache embeddings; ANN indexes; reduce k.

  6. Reranker cost?
    Batch pairs; small cross-encoders.

  7. JSON mode robust?
    Validate schema; repair; cap retries.

  8. SSE vs WebSocket?
    SSE simpler for one-way streams; WS for bi-directional.

  9. Autoscaling signals?
    Queue depth, p95 latency, error rate.

  10. Cost budgets?
    Per-tenant and per-route; alert on spikes.

  11. A/B sample size?
    Run until significance; cover weekday/weekend.

  12. Multilingual evaluation?
    Macro-F1 across languages.

  13. Prompt registry?
    Store prompts with versions and owners.

  14. RAG stale documents?
    Index refresh; refuse if insufficient context.

  15. Privacy audits?
    Evidence packs; DSAR handling.

  16. Model card updates?
    Per release; include risks.

  17. Localization pitfalls?
    Proper tokenization and dates.

  18. Transformers on mobile?
    Distill + quantize + TFLite/CoreML.

  19. GPU shortages?
    Smaller models; aggressive caching.

  20. When is it done?
    SLOs are healthy; costs and quality stable.


Multilingual Pipelines (mT5 / mBERT)

from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
model_id = 'google/mt5-base'
tok = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForSeq2SeqLM.from_pretrained(model_id)

def translate(text: str, src: str, tgt: str):
    # mT5 approach: prefix with task
    x = tok(f"translate {src} to {tgt}: {text}", return_tensors='pt')
    y = model.generate(**x, max_new_tokens=128)
    return tok.decode(y[0], skip_special_tokens=True)
# Language routing
from lingua import LanguageDetectorBuilder
langs = LanguageDetectorBuilder.from_all_languages().build()

def detect_lang(t: str):
    l = langs.detect_language_of(t)
    return l.iso_code_639_1.name.lower() if l else 'en'

def route_model(lang: str):
    return {
        'en': 'roberta-base',
        'de': 'deepset/gbert-base',
        'es': 'dccuchile/bert-base-spanish-wwm-cased'
    }.get(lang, 'xlm-roberta-base')

Domain Adaptation (Continued Pretraining)

from transformers import AutoModelForMaskedLM, DataCollatorForLanguageModeling, Trainer, TrainingArguments
mdl = AutoModelForMaskedLM.from_pretrained('bert-base-uncased')
collator = DataCollatorForLanguageModeling(tok, mlm_probability=0.15)
args = TrainingArguments('out/continued', per_device_train_batch_size=32, num_train_epochs=1, learning_rate=5e-5, fp16=True)
Trainer(model=mdl, args=args, train_dataset=domain_texts, data_collator=collator).train()

Safety and Fairness

# toxicity detection
from detoxify import Detoxify
tox = Detoxify('original')
score = tox.predict("text")['toxicity']
# bias metrics for classification
import numpy as np

def spd(y_hat, s):
    return float(np.mean(y_hat[s==1]) - np.mean(y_hat[s==0]))

def eod(y_hat, y_true, s):
    tpr1 = np.mean((y_hat==1) & (y_true==1) & (s==1)) / max(1, np.sum((y_true==1) & (s==1)))
    tpr0 = np.mean((y_hat==1) & (y_true==1) & (s==0)) / max(1, np.sum((y_true==1) & (s==0)))
    return float(tpr1 - tpr0)
// PII guard
export function guardPII(text: string){
  const PII = [/(\d{3}-\d{2}-\d{4})/g, /\b\d{16}\b/g, /[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Za-z]{2,}/g]
  return PII.some((r)=>r.test(text))
}

Dataset Creation and QA

import re
from blingfire import text_to_sentences

def quality_score(t: str) -> float:
    sents = text_to_sentences(t).split('\n')
    if len(sents) < 2: return 0.2
    if re.search(r"http(s)?://", t): return 0.6
    return min(1.0, 0.5 + 0.05*len(sents))

clean = [rec for rec in raw if quality_score(rec['text']) >= 0.6]

Retrieval Integration (Weaviate / Qdrant)

# Weaviate example
import weaviate
client = weaviate.Client("http://localhost:8080")
q = client.query.get("Doc", ["text"]).with_near_text({"concepts": ["nlp transformers"]}).with_limit(10).do()
# Qdrant example
import qdrant_client
qc = qdrant_client.QdrantClient(host='localhost', port=6333)
qc.search(collection_name='docs', query_vector=vec.encode([q])[0], limit=10)

Evaluation Harness (Classification + Seq2Seq)

from sklearn.metrics import accuracy_score, f1_score

def eval_cls(model, dl):
    y_true, y_pred = [], []
    for batch in dl:
        with torch.no_grad(): out = model(**batch)
        y_true.extend(batch['labels'].cpu().numpy())
        y_pred.extend(out.logits.argmax(-1).cpu().numpy())
    return { 'acc': accuracy_score(y_true,y_pred), 'f1': f1_score(y_true,y_pred, average='weighted') }
# seq2seq eval: ROUGE/BLEU via datasets.load_metric

Prompt Registry and Versioning

{
  "id": "summary_en_v3",
  "version": 3,
  "prompt": "Summarize: {{text}}",
  "constraints": { "max_tokens": 128 },
  "owners": ["nlp-platform@company.com"],
  "rollout": { "canary": 0.1 }
}

Streaming Clients

// SSE
const src = new EventSource('/api/stream'); src.onmessage = (e) => append(e.data)
// WebSocket
const ws = new WebSocket('wss://api/ws'); ws.onmessage = (m) => render(m.data)

Autoscaling / Helm / Terraform

apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata: { name: nlp }
spec:
  minReplicas: 3
  maxReplicas: 20
  metrics:
    - type: Pods
      pods: { metric: { name: queue_depth }, target: { type: AverageValue, averageValue: 10 } }
resource "aws_eks_node_group" "nlp" {
  scaling_config { desired_size = 3, max_size = 10, min_size = 3 }
  instance_types = ["m6i.2xlarge"]
}

Dashboards / Alerts / Runbooks

# tokens/sec
sum(rate(nlp_tokens_total[1m]))
# error rate
sum(rate(nlp_errors_total[5m]))/sum(rate(nlp_requests_total[5m]))
groups:
- name: nlp
  rules:
  - alert: HighLatency
    expr: histogram_quantile(0.95, sum by (le) (rate(nlp_latency_seconds_bucket[5m]))) > 0.5
    for: 10m
    labels: { severity: page }
Runbook: HighLatency
- Check batching and model route; switch to ONNX/TensorRT; reduce max tokens

Extended FAQ (901–1400)

  1. How to route by language?
    Detect with lingua/fasttext; map to mBERT/mT5.

  2. Domain adaptation cost?
    Continue pretraining for 1–3 epochs; monitor MLM loss.

  3. Toxicity filters?
    Use Detoxify; set thresholds; human review on edge cases.

  4. Deduping large corpora?
    MinHash/SimHash; store hashes.

  5. Retrieval latency?
    Cache embeddings; ANN indexes; reduce k.

  6. Reranker cost?
    Batch pairs; small cross-encoders.

  7. JSON mode robust?
    Validate schema; repair; cap retries.

  8. SSE vs WebSocket?
    SSE simpler for one-way streams; WS for bi-directional.

  9. Autoscaling signals?
    Queue depth, p95 latency, error rate.

  10. Cost budgets?
    Per-tenant and per-route; alert on spikes.

  11. A/B sample size?
    Run until significance; cover weekday/weekend.

  12. Multilingual evaluation?
    Macro-F1 across languages.

  13. Prompt registry?
    Store prompts with versions and owners.

  14. RAG stale documents?
    Index refresh; refuse if insufficient context.

  15. Privacy audits?
    Evidence packs; DSAR handling.

  16. Model card updates?
    Per release; include risks.

  17. Localization pitfalls?
    Proper tokenization and dates.

  18. Transformers on mobile?
    Distill + quantize + TFLite/CoreML.

  19. GPU shortages?
    Smaller models; aggressive caching.

  20. When is it done?
    SLOs are healthy; costs and quality stable.


Multilingual Pipelines (mT5 / mBERT)

from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
model_id = 'google/mt5-base'
tok = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForSeq2SeqLM.from_pretrained(model_id)

def translate(text: str, src: str, tgt: str):
    # mT5 approach: prefix with task
    x = tok(f"translate {src} to {tgt}: {text}", return_tensors='pt')
    y = model.generate(**x, max_new_tokens=128)
    return tok.decode(y[0], skip_special_tokens=True)
# Language routing
from lingua import LanguageDetectorBuilder
langs = LanguageDetectorBuilder.from_all_languages().build()

def detect_lang(t: str):
    l = langs.detect_language_of(t)
    return l.iso_code_639_1.name.lower() if l else 'en'

def route_model(lang: str):
    return {
        'en': 'roberta-base',
        'de': 'deepset/gbert-base',
        'es': 'dccuchile/bert-base-spanish-wwm-cased'
    }.get(lang, 'xlm-roberta-base')

Domain Adaptation (Continued Pretraining)

from transformers import AutoModelForMaskedLM, DataCollatorForLanguageModeling, Trainer, TrainingArguments
mdl = AutoModelForMaskedLM.from_pretrained('bert-base-uncased')
collator = DataCollatorForLanguageModeling(tok, mlm_probability=0.15)
args = TrainingArguments('out/continued', per_device_train_batch_size=32, num_train_epochs=1, learning_rate=5e-5, fp16=True)
Trainer(model=mdl, args=args, train_dataset=domain_texts, data_collator=collator).train()

Safety and Fairness

# toxicity detection
from detoxify import Detoxify
tox = Detoxify('original')
score = tox.predict("text")['toxicity']
# bias metrics for classification
import numpy as np

def spd(y_hat, s):
    return float(np.mean(y_hat[s==1]) - np.mean(y_hat[s==0]))

def eod(y_hat, y_true, s):
    tpr1 = np.mean((y_hat==1) & (y_true==1) & (s==1)) / max(1, np.sum((y_true==1) & (s==1)))
    tpr0 = np.mean((y_hat==1) & (y_true==1) & (s==0)) / max(1, np.sum((y_true==1) & (s==0)))
    return float(tpr1 - tpr0)
// PII guard
export function guardPII(text: string){
  const PII = [/(\d{3}-\d{2}-\d{4})/g, /\b\d{16}\b/g, /[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Za-z]{2,}/g]
  return PII.some((r)=>r.test(text))
}

Dataset Creation and QA

import re
from blingfire import text_to_sentences

def quality_score(t: str) -> float:
    sents = text_to_sentences(t).split('\n')
    if len(sents) < 2: return 0.2
    if re.search(r"http(s)?://", t): return 0.6
    return min(1.0, 0.5 + 0.05*len(sents))

clean = [rec for rec in raw if quality_score(rec['text']) >= 0.6]

Retrieval Integration (Weaviate / Qdrant)

# Weaviate example
import weaviate
client = weaviate.Client("http://localhost:8080")
q = client.query.get("Doc", ["text"]).with_near_text({"concepts": ["nlp transformers"]}).with_limit(10).do()
# Qdrant example
import qdrant_client
qc = qdrant_client.QdrantClient(host='localhost', port=6333)
qc.search(collection_name='docs', query_vector=vec.encode([q])[0], limit=10)

Evaluation Harness (Classification + Seq2Seq)

from sklearn.metrics import accuracy_score, f1_score

def eval_cls(model, dl):
    y_true, y_pred = [], []
    for batch in dl:
        with torch.no_grad(): out = model(**batch)
        y_true.extend(batch['labels'].cpu().numpy())
        y_pred.extend(out.logits.argmax(-1).cpu().numpy())
    return { 'acc': accuracy_score(y_true,y_pred), 'f1': f1_score(y_true,y_pred, average='weighted') }
# seq2seq eval: ROUGE/BLEU via datasets.load_metric

Prompt Registry and Versioning

{
  "id": "summary_en_v3",
  "version": 3,
  "prompt": "Summarize: {{text}}",
  "constraints": { "max_tokens": 128 },
  "owners": ["nlp-platform@company.com"],
  "rollout": { "canary": 0.1 }
}

Streaming Clients

// SSE
const src = new EventSource('/api/stream'); src.onmessage = (e) => append(e.data)
// WebSocket
const ws = new WebSocket('wss://api/ws'); ws.onmessage = (m) => render(m.data)

Autoscaling / Helm / Terraform

apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata: { name: nlp }
spec:
  minReplicas: 3
  maxReplicas: 20
  metrics:
    - type: Pods
      pods: { metric: { name: queue_depth }, target: { type: AverageValue, averageValue: 10 } }
resource "aws_eks_node_group" "nlp" {
  scaling_config { desired_size = 3, max_size = 10, min_size = 3 }
  instance_types = ["m6i.2xlarge"]
}

Dashboards / Alerts / Runbooks

# tokens/sec
sum(rate(nlp_tokens_total[1m]))
# error rate
sum(rate(nlp_errors_total[5m]))/sum(rate(nlp_requests_total[5m]))
groups:
- name: nlp
  rules:
  - alert: HighLatency
    expr: histogram_quantile(0.95, sum by (le) (rate(nlp_latency_seconds_bucket[5m]))) > 0.5
    for: 10m
    labels: { severity: page }
Runbook: HighLatency
- Check batching and model route; switch to ONNX/TensorRT; reduce max tokens

Extended FAQ (901–1400)

  1. How to route by language?
    Detect with lingua/fasttext; map to mBERT/mT5.

  2. Domain adaptation cost?
    Continue pretraining for 1–3 epochs; monitor MLM loss.

  3. Toxicity filters?
    Use Detoxify; set thresholds; human review on edge cases.

  4. Deduping large corpora?
    MinHash/SimHash; store hashes.

  5. Retrieval latency?
    Cache embeddings; ANN indexes; reduce k.

  6. Reranker cost?
    Batch pairs; small cross-encoders.

  7. JSON mode robust?
    Validate schema; repair; cap retries.

  8. SSE vs WebSocket?
    SSE simpler for one-way streams; WS for bi-directional.

  9. Autoscaling signals?
    Queue depth, p95 latency, error rate.

  10. Cost budgets?
    Per-tenant and per-route; alert on spikes.

  11. A/B sample size?
    Run until significance; cover weekday/weekend.

  12. Multilingual evaluation?
    Macro-F1 across languages.

  13. Prompt registry?
    Store prompts with versions and owners.

  14. RAG stale documents?
    Index refresh; refuse if insufficient context.

  15. Privacy audits?
    Evidence packs; DSAR handling.

  16. Model card updates?
    Per release; include risks.

  17. Localization pitfalls?
    Proper tokenization and dates.

  18. Transformers on mobile?
    Distill + quantize + TFLite/CoreML.

  19. GPU shortages?
    Smaller models; aggressive caching.

  20. When is it done?
    SLOs are healthy; costs and quality stable.


Advanced Serving Topologies

graph LR
U[User/App] --> G[Gateway]
G --> R[Model Router]
R --> C[Cache]
R --> M1[Small Model]
R --> M2[Medium Model]
R --> M3[Large Model]
M1 --> OBS[OTEL]
M2 --> OBS
M3 --> OBS
C --> G

Request Schemas and Validators

import Ajv from 'ajv'
const ajv = new Ajv({ allErrors: true, strict: true })
const Req = {
  type: 'object',
  required: ['text'],
  properties: { text: { type: 'string', minLength: 1 }, max_tokens: { type: 'integer', minimum: 1, maximum: 1024 }, temperature: { type: 'number', minimum: 0, maximum: 1 } },
  additionalProperties: false
}
export const validateReq = ajv.compile(Req)

Batched Generation Workers

const queue: any[] = []
setInterval(async () => {
  const batch = queue.splice(0, BATCH_SIZE)
  if (batch.length === 0) return
  const enc = tokenize(batch.map(b => b.text))
  const out = await model.generate(enc, { max_tokens: 256 })
  out.forEach((o, i) => batch[i].resolve(o))
}, 10)

export function enqueue(text: string){
  return new Promise((resolve) => queue.push({ text, resolve }))
}

Triton Text Backend (Sketch)

# model.py
def initialize(args):
    from transformers import AutoModelForCausalLM, AutoTokenizer
    global tok, mdl
    tok = AutoTokenizer.from_pretrained(args['model'])
    mdl = AutoModelForCausalLM.from_pretrained(args['model']).eval().cuda()

def execute(requests):
    responses = []
    for req in requests:
        inputs = tok(req['text'], return_tensors='pt').to('cuda')
        out = mdl.generate(**inputs, max_new_tokens=128)
        responses.append(tok.decode(out[0]))
    return responses

Langsmith / Helicone Hooks

import { Client as Langsmith } from 'langsmith'
const ls = new Langsmith({ apiKey: process.env.LS_KEY })
await ls.createRun({ name: 'nlp.generate', inputs: { text }, outputs: { out }, metadata: { model } })
await fetch('https://oai.hconeai.com/v1/chat/completions', { headers: { 'Helicone-Auth': `Bearer ${HELICONE}` }, body: JSON.stringify(payload), method: 'POST' })

Evaluation Suites (CLS / NER / QA / SUMM)

from datasets import load_dataset
from sklearn.metrics import f1_score, accuracy_score

cls = load_dataset('ag_news')
# preprocess... tokenization
# eval loop → compute acc/f1
# NER eval: token-level F1 on CoNLL
# QA eval: EM/F1 on SQuAD
# SUMM eval: ROUGE-1/2/L on CNN/DM

Golden Sets and Probes

suite: nlp_golden_v1
items:
  - id: cls-001
    input: "The stock surged today"
    expected_label: business
  - id: qa-002
    question: "Who wrote 1984?"
    context: "1984 is a novel by George Orwell."
    expected: "George Orwell"

Governance (Owners / Approvals / Rollbacks)

{
  "template": "summary_en_v4",
  "owner": "nlp-platform@company.com",
  "approvers": ["security@company.com","product@company.com"],
  "rollback": { "on": { "win_drop": 0.03, "latency_ms": 200 } }
}

Evidence Pack CLI

#!/usr/bin/env bash
OUT=evidence_$(date +%F).zip
mkdir -p evidence && cp -r eval dashboards policies prompts evidence/ || true
zip -r "$OUT" evidence

Dashboards (Grafana JSON)

{
  "title": "NLP Ops",
  "panels": [
    {"type":"timeseries","title":"Latency p95","targets":[{"expr":"histogram_quantile(0.95, sum by (le) (rate(nlp_latency_seconds_bucket[5m])))"}]},
    {"type":"stat","title":"Cost/min","targets":[{"expr":"sum(rate(nlp_cost_usd_total[1m]))"}]},
    {"type":"table","title":"Tokens/sec by Route","targets":[{"expr":"sum by (route) (rate(nlp_tokens_total[1m]))"}]}
  ]
}

Alertmanager Rules

groups:
- name: nlp
  rules:
  - alert: HighErrorRate
    expr: (sum(rate(nlp_errors_total[5m])) / sum(rate(nlp_requests_total[5m]))) > 0.02
    for: 10m
    labels: { severity: page }
  - alert: CostSpike
    expr: sum(rate(nlp_cost_usd_total[5m])) > 5
    for: 15m
    labels: { severity: ticket }

Runbooks and SOPs

HighErrorRate
- Inspect logs; recent deploys; schema mismatches; rollback

CostSpike
- Enforce budgets; route smaller models; cache hot prompts

LatencySpike
- Reduce max tokens; ONNX/TensorRT; adjust batching

Cost Forecasting

scenario,req_per_day,tokens_in,tokens_out,price_in,price_out,cost_usd_day
base,500000,400,80,0.000004,0.000012,?  
peak,2000000,500,120,0.000004,0.000012,?  
- cost = req_per_day * (tokens_in*price_in + tokens_out*price_out)
- add buffer (10–20%) for variability

Security Hardening (mTLS, OPA)

# Istio PeerAuthentication
a piVersion: security.istio.io/v1beta1
kind: PeerAuthentication
metadata: { name: default, namespace: nlp }
spec: { mtls: { mode: STRICT } }
package nlp

deny["oversized"] { input.request.tokens_in > 4096 }
allow { count(deny) == 0 }

Extended FAQ (1401–1700)

  1. Micro-batching interval?
    5–20ms depending on traffic profile.

  2. Cache keys?
    Inputs + version + route; avoid PII.

  3. Canary guardrails?
    Win-rate, latency p95, error rate thresholds.

  4. Golden set upkeep?
    Monthly; add incident cases.

  5. Streaming stall?
    Chunked responses; client timeouts.

  6. Traces correlation?
    W3C TraceContext across services.

  7. Token explosion?
    Trim inputs; compress prompts; budgets.

  8. Data residency?
    Regional clusters; routing.

  9. DSAR workflow?
    Export/delete logs tied to hashed IDs.

  10. Model registry?
    Artifacts, owners, changelogs.

  11. Evidence packs?
    Dashboards, evals, policies, prompts.

  12. CLI ergonomics?
    Render, eval, evidence commands.

  13. Scaling bottlenecks?
    Embedding and reranking; batch and cache.

  14. Prompt regressions?
    CI gates; rollbacks.

  15. Guardrail latency?
    <20% overhead target.

  16. When to re-architect?
    When SLOs or costs drift persistently.

Related posts