Real-Time Data Streaming: Kafka and Flink Architecture (2025)
Oct 26, 2025•
streamingkafkaflinkcdc
• 0
Modern products depend on fresh data. This guide covers production streaming with Kafka and Flink.
Executive summary
- Use schemas (Avro/Protobuf) and registries to evolve safely
- Prefer idempotent producers, exactly-once sinks; measure end-to-end latency
- Isolate hot partitions, scale consumers, monitor backpressure and lag
Reference architecture
- Ingest: producers (apps, CDC via Debezium), schema registry
- Processing: Flink jobs (stateful windows, joins), state backends
- Storage/Sinks: OLAP (ClickHouse), OLTP, caches, search
Exactly-once
- Kafka transactions + Flink checkpoints; dedupe keys; idempotent sinks
CDC
- Debezium connectors; outbox pattern; schema evolution policies
Operations
- Monitor consumer lag, rebalance churn, partition skew; size brokers, ISR
FAQ
Q: When to choose Flink vs Kafka Streams?
A: Flink for complex stateful processing and windowing at scale; Kafka Streams for simpler app-embedded topologies.
Related posts
- Event-Driven Architecture: /blog/event-driven-architecture-patterns-async-messaging
- Data Pipeline Orchestration: /blog/data-pipeline-orchestration-airflow-prefect-dagster
- ClickHouse Performance: /blog/clickhouse-analytics-database-performance-guide-2025
- Database Sharding: /blog/database-sharding-partitioning-strategies-scale-2025
- Caching Strategies: /blog/caching-strategies-redis-memcached-cdn-patterns-2025
Call to action
Designing streaming at scale? Get a reference architecture review.
Contact: /contact • Newsletter: /newsletter